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A B S T R A C T   

Electricity production from the burning of fossil fuels, is one of the main sources of Carbon Dioxide (CO2) 
emissions. Therefore, it is necessary to find alternatives to mitigate CO2 emissions. Having as alternative the 
implementation of CO2 Capture and Storage plants (CCS). Highlighting post-combustion technologies with 
chemical absorption and mono-ethanolamine (MEA) as solvent. Despite its high efficiency to capture CO2, MEA is 
considered toxic, so its implementation entails an environmental impact. Moreover, no studies report a complete 
design considering environmental impact and the process economies as a sustainable indicator. 

This work presents the optimization of the design of a CO2 capture plant coupled to a power plant considering 
a stochastic algorithm having as objective function the minimization of the Ecoindicator 99, Condition Number 
(γ∗) and maximize the return on investment (ROI). To evaluate the environmental implications, control prop
erties and economic of the process, respectively. The analysis considered the most used fuels in the power plant: 
coal, natural gas, and associated gas. Including the analysis of biogas as a green fuel to produce energy. All the 
cases were standardized to recover 99% of the CO2 produced. The results indicate that the design with the best 
overall performance is when natural gas is burned. Having a lower environmental impact with 22549.43 
kEcopoints and a ROI of 73.24%.   

1. Introduction 

Carbon dioxide (CO2) is one of the most polluting gases at global 
level. CO2 plays a major role in the greenhouse effect contributing to 
global climate change. This global overheating has drastic consequences 
for the entire planet. Likewise, CO2 concentration continues rising 
because the rate of CO2 emission in the atmosphere is bigger than the 
rate of its absorption. 

CO2 emissions are primarily produced by the burning of fossil fuel 
from industrial activity, transport and electricity production. It is re
ported that 70% of CO2 emissions are related to electricity production. 
According to the International Energy Agency, about 33.4 Gt of CO2 
produced in 2019 came from electricity production from the burning of 
fossil fuels [1]. Moreover, the COVID-19 pandemic has had a significant 
impact on how energy is produced, supplied, and consumed worldwide. 
Due to the pandemic situation, there was an increment of renewable 

energy utilization, resulting on the reduction of fossil fuel consumption. 
Therefore, the global CO2 emissions related to the electricity sector 
dropped by almost 5.8% [2,3]. While 2020 marked the biggest decline in 
global CO2 emissions in history, in 2022 there is evidence of a rapid 
rebound in energy demand and therefore the rising of CO2 emissions. In 
this sense, almost the 60% of the total electricity production worldwide 
is generated from the burning of fossil fuels. Having coal, natural gases 
and oil as the three major fossil sources to obtain energy in power 
generation plants [4]. 

Due to the seriousness of the problem, solutions have been sought 
promoting concrete actions aimed at curbing climate change. According 
to the sustainability objectives of the United Nations, it is necessary to 
develop new processes or improve the existing one in order to be sus
tainable and contribute to the improvement of environmental impact 
derived from CO2 emissions. Nowadays, the implementation of CO2 
Carbon Capture and Storage (CCS) technologies has been exhibited as a 
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promising option to reduce CO2 emissions, reduce global warming, and 
avoid climate change. CCS methods are technologies used to capture 
carbon dioxide, emitted mainly by burning fossil fuels in power plants, 
preventing CO2 from being released into the atmosphere. There are 
three ways to classify CO2 capture technologies; Oxy-fuel combustion, 
Pre-Combustion Capture and Post-Combustion Capture [5]. Within 
these three categories there are examples of technologies that have been 
used to capture CO2. Post-combustion capture can be divided into three 
categories: biological methods, physical methods, and chemical 
methods. One example of biological method is the case of CO2 fixation 
through the photosynthesis of plants, algae, and photosynthetic bacte
ria. This method has low CO2 absorption capacity to cover the amounts 
of CO2 produced worldwide. Some examples of physical methods are the 
CO2 capture by physical absorption, cryogenic condensation, and 
membrane separation methods with an organic solution without 
chemical reaction occurring during the capture process [6–8]. The 
physical methods, in comparison with the biological methods, present 
better efficiency in CO2 absorption. However, they are more expensive 
due to the absorbents used. On the other hand, chemical methods absorb 
CO2 by reacting with chemical absorbents. Compared to the other 
methods mentioned, the chemical absorption method turns out to be the 
best option for the separation of CO2, due to its high efficiency and low 
cost [9,10]. 

Typical chemical absorption process is used for separating CO2 from 
exhaust gases. The process consists of an absorber and a regenerator 
column where the solvent is regenerated. As a first step in the absorption 
column, the exhaust gases (CO2, N2 and O2) are in contact with a liquid 
solvent, typically an aqueous amine solution. The amine selectively 
absorbs the CO2, capturing more than 85% of the CO2, enabling nitrogen 
and oxygen to be released into the atmosphere [11]. As a second step, 
the amine is regenerated, and the CO2 stripped out of the liquid. The CO2 
is obtained as pure gas at the column top, while the lean amine is 
recycled to the absorption column. 

The most widely used solvent for CO2 absorption is aqueous mono- 
ethanolamine (MEA) solution at 30% by weight [12]. 
Mono-ethanolamine (MEA) is the most widely used and studied solvent 
due to its great CO2 capture capacity. Since its thermophysical proper
ties are well studied, it is possible to simulate the process with high 
precision, which has made MEA a comparison basis to evaluate the 
performance of other more sophisticated solvents. Despite its high effi
ciency, MEA is considered highly toxic, so its implementation entails a 
high environmental impact, plus the considerable energy required for its 
regeneration. Those drawbacks open the opportunity to study new green 
solvents, which can be capable of replacing the MEA in the CO2 capture 
process. 

Due to the necessity of developing green processes, new research 
points to different solvents as potential alternatives that can be used for 
CO2 capture. Allowing the study of other solvents, such as Deep Eutectic 
Solvents (DES), considered green solvents due to the nature of its com
ponents [13]. Likewise, using potassium taurate as a solvent presents the 
advantage of lower corrosion and good stability compared to MEA [14]. 
Another example is the potential use of piperazine as a solvent, through 
a thermodynamic analysis it has been proved the CO2 absorption effi
ciency [15,16]. Despite the apparent advantages that these solvents 
have compared to MEA, as long as they are not economically competi
tive or there are no models at the industrial level, amine-based chemical 
absorption will still consider the most industrially developed technology 
for this kind of process. 

To improve and convert the traditional CO2 capture process with 
MEA into a sustainable process, it is necessary to evaluate the process 
according to sustainability metrics. Jiménez-González and Constable 
propose that a good measure to evaluate the sustainability of a process is 
to analyze the economic, environmental and controllability indicators, 
which is directly proportional to the safety of the process, as sustain
ability metrics [17] . 

In order to minimize and environmental impact due to MEA used as 

solvent during CO2 capture, this work aims to present a novel proposal 
for the simulation of a CO2 capture plant coupled to a power plant, 
where the optimal design and operation conditions are presented, from a 
sustainable point of view, turning the traditional capture process with 
MEA, into a sustainable process following the green chemistry 
principles. 

Unlike other works reported in the literature where a mono-objective 
optimization of the energy requirements where is presented as a pre
liminary analysis of the CO2 capture plant [18]. In this work it is pre
sented a multi-objective optimization considering the stochastic 
algorithm having as objective function the minimization of the envi
ronmental implications of capture plants using MEA as solvent (Ecoin
dicator 99), the minimization of Condition Number (CN) as an indicator 
of the control properties of the system, as well maximize the return on 
investment (ROI) as an economic indicator. Another contribution of this 
work is to consider the power plant and the capture plant within the 
optimization. Even when the power plant is presented as a simplified 
model, it is important to remark the complexity of the thermodynamics 
involved in the model. And therefore, the high non-linearity for the 
optimization problem. The analysis considered the most used fuels in the 
power plant: coal, natural gas, and associated gas. As well it is included 
an analysis of biogas as green fuel to produce energy. All the cases were 
standardized to recover 99% of the CO2 produced during the combus
tion. This works presents 

2. Sustainability indicators 

The indices proposed for developing green chemistry in this work are 
mainly related to the economy with the Return on Investment (ROI), the 
environmental impact measured through the Eco-Indicator 99 (EI99), 
and the process controllability with the Condition Number (γ*). 

There are works in the literature where it has been shown how the 
integration of different metrics, such as the indices proposed in this 
work, can improve the sustainability of the process due to the inherent 
interconnection between different aspects such as: environmental 
impact, safety, profitability, energy efficiency problems, among others 
[19]. According to Jiménez-González and Constable [17], these axes are 
needed to evaluate green chemistry of a process. 

In this way, considering different metrics such as environmental 
impact, controllability and economic issues provides a broad perspective 
that can help in the decision-making process where multiple decision 
variables are commonly evaluated simultaneously that affect the oper
ability of the process, the useful life of the project and the economics of 
the process [19]. Finally, the indices considered in this work are 
described below. 

2.1. Economy of the process: return on investment (ROI) 

The Return On Investment (ROI) is a financial indicator that mea
sures the investment profitability; that is, the relationship between the 
profits or profits obtained or expected to be obtained, and the invest
ment. The ROI calculation is based on the annual revenue, the annual 
production costs and the total capital investment, as well it is stated as a 
percentage per year (see Eq. (1)) [20–22]. 

ROI =
P
I

(1) 

A process is considered profitable when the ROI is bigger than the 
bank’s annual rate for an investment of an annual term. To establish an 
economic activity, an investment (I) is needed, in exchange for this in
vestment income is obtained in the form of sales, which must offer a 
surplus over the operating costs of the process to have commercializa
tion potential. To calculate the total investment of the process (I), the 
investment must be broken down into fixed investment (If ) and a 
working capital (Iw), as shown in Eq. (2): 
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I = If + Iw (2) 

According to Gutiérrez [20] the If represents 80% of the total in
vestment and represents the expenses per equipment. Likewise, the Iw 

represents the cost per raw material, acquiring a value of 20% of the 
total investment. For the calculation of If , 75% is assumed at the cost of 
principal equipments (IE) and 25% at the cost of auxiliary equipment (IA) 
according to Eq. (3). 

If = IE + IA (3) 

To calculate the cost of principal equipment, the Guthrie Method was 
used [23]. As the purpose of the work is to implement capture systems in 
existing power plants, for the calculation of investment costs the 
absorber, desorber and auxiliary equipment are included in the Capital 
Cost. Here, carbon steel is considered a construction material. All the 
parameters for the equipment and the utility costs were taken from 
Turton et al.[24] 

To calculate the net profit (P), it is necessary to address some pre
vious concepts. One of them is the cost of operation (C), this concept 
associates the costs related to investment, variable costs and labor costs. 
They can be evaluated per unit of time ($/year) or per unit of production 
($/kg) and are calculated as shown in Eq. (4) [20]: 

C = aI +
∑

bMP+
∑

cE + dMO −
∑

pSP (4)  

where C represents the operating cost of the process, aI is a factor that 
considers annual expenses such as royalties, maintenance, etc. bMP 
represents the unit cost of each raw material MP, cE represents the cost 
of each service E, dMO represents labor costs and pSP represents the unit 
cost of each by-product SP. It is important to point out that aI +dMO 
represent approximately 5% of the Investment (I). As well, another 
important concept is gross profit (R), which is defined as the difference 
between annual sales (S) and the annual operating cost [20] (see Eq. 
(5)). 

R = S − C (5) 

The net profit (P) is calculated by subtracting the equipment 
depreciation the payment of taxes from the gross profit as shown in Eq. 
(6)[20]: 

P = R − eI − t(R − dI) (6)  

where eI represents a constant depreciation factor, t represents a tax 
rate, and dI represents a tax depreciation. 

2.2. Environmental impact measured: eco-indicator 99 (EI99) 

The Eco-Indicator 99 (EI99) is a methodology proposed by Goedkoop 
and Spriensma [25] as a quantitative life cycle analysis. This method
ology accounts for the origin of raw material in processing and degra
dation. It is based on standard ecological indicators, which are numbers 
that express the total environmental burden of a product or a process. 
The higher the value of the indicator, the greater the environmental 
impact. This method is based on the evaluation of three categories: 

The first category is human health; this set represents the span of an 
illness and years lost due to premature death because of environmental 
causes. The evaluated points in this category are: carcinogenic effects, 
climate change, destruction of the ozone layer, radiation and respiratory 
effects. The second category is the quality of the ecosystem, which shows 
the effects on different species. The effects it evaluates are: ecotoxicity, 
acidification, and eutrophication due to land use. The third category is 
the depletion of resources, which refers to the surplus energy needed to 
extract mineral resources and fossil fuels. This part assesses fossil fuels 
and mineral extraction. Mathematically, EI99 can be expressed as shown 
in Eq. (7): 

EI99 =
∑

i
ω⋅Ci⋅α (7)  

where ω represents the weight factor for the damage, Ci represents the 
impact value for category i, and α represents the amount of what is being 
evaluated. The unit used for EI99 is the eco-point, where 1 eco-point is 
representative of one thousandth of the annual environmental burden of 
an average European inhabitant. 

2.3. Process controllability: condition number (γ*) 

The singular value decomposition (SVD) is a mathematical method 
used to compute the pseudoinverse, matrix approximation, and deter
mining the rank, range, and null space of a matrix. The SVD is also 
extremely useful in all areas of science, engineering, and statistics, such 
as signal processing, least squares fitting of data, and process control 
[26]. 

For example:  

(a) in signal processing, SVD and pseudoinverse have been efficiently 
applicable in analyzing modifying, and synthesizing signals and 
sounds.  

(b) in image processing, SVD is used to process images with 
algorithms.  

(c) SVD it is quite helpful in face recognition, widely known as model 
analysis, where non-scaled mode shapes can be determined with 
non-scaled mode shapes.  

(d) SVD is used in numerical weather prediction. Is helpful where 
mathematical modes of the atmosphere are used weather pre
diction based on present weather condition. 

As SVD helps in the perfect representation of any matrix and it is 
quite easy to eliminate data that is not that important in a matrix to 
produce low-dimensional approximation. About process control, SVD is 
used in the multivariable control theory to measure control properties of 
a dynamic system as a tool to quantify multivariable directionality as a 
function of frequency. The magnitude of singular values is associated 
with the system gains as the direction of the inputs are varied. This 
might relate to the “force” the inputs require to move the system in a 
certain direction. On the one hand, the minimum singular value (σ∗) is 
associated with the direction where the system has more difficulties 
moving to. On the other hand, the magnitude of the maximum singular 
value (σ*) indicates the easiest direction the system will move to [27]. 

The degree to which ill-conditioning prevents a matrix from being 
inverted accurately depends on the ratio of its largest to smallest sin
gular value, a quantity known as the Condition Number (γ *). The S 
matrix obtained from SVD is shown in Eq. (8). 

S =

⎡

⎣
σ1

⋱
σn

⎤

⎦ (8) 

From both aforementioned values, the γ * can be obtained, and it is 
defined as the quotient between the maximum singular value and the 
minimum singular value as shown in Eq. (9). 

γ ∗ =
σ∗
σ∗

(9) 

The Condition Number quantifies the sensitivity of the system to 
inaccuracies in process parameters and mode errors. Systems with small 
Condition Number present better control properties. Therefore, it is 
necessary to identify systems with high values of minimum singular 
value (σ∗) and low values of the Condition Number (γ ∗). It is expected 
that these systems will have the best dynamic behavior. It is necessary to 
reiterate that the association of high Condition Number is due to ill- 
conditioning with poor control properties. 
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Although the Condition Number is reported numerically, its inter
pretation is qualitative. It is not possible to know how good the control 
properties of a design are by the simple numerical value obtained. Its 
representation makes sense when compared with other designs. The 
design with the lowest value of condition number, compared to all 
comparative designs, is the one that presents the best control properties. 
Because of its qualitative representation, it is not possible to define a 
value from which a design has good control properties, therefore in an 
optimization problem should be considered as an index and not as a 
constraint. 

For the control analysis in the case of CO2 capture, each purification 
alternative provides a relative gain matrix in its nominal state. To obtain 
this matrix, the schemes are subjected to a disturbance in a manipulable 
variable (reflux ratio, reboiler duty, etc.) The magnitude of the distur
bance is small enough (0.5%) that a first-order behavior can be assumed 
according to many previous works [28,29]. To avoid the SVD depen
dence of the system unit used (variables limited between 0 and 1, and 
high values for reflux ratio and reboiler heat duties) the approach of the 
proposal used in here is to limit the variables described. Since the 
maximum opening of the control valves can be twice the nominal value, 
the valves are theoretically open by 50%. In this way, to generate the 
relative gain matrix, a step change must be applied in the manipulated 
variable, and subsequently, this change must be divided by two. With 
this consideration, you get the same range of variation when opening 
and closing the control valves. The consequence of this consideration is 
to relate both, the amount and magnitude of change in a range of 
0–100%. Moreover, with this form of scaling, and with the term 1/2P in 
Eq. (10), the manipulated variables are simultaneously dimensionless 
standardized. For example, a relative gain matrix for the purification of 
three components could be stated as: 

⎡

⎣
K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xv1
C1 − xsp

C1
1
2

P

xv2
C1 − xsp

C1
1
2

P

xv3
C1 − xsp

C1
1
2

P

xv1
C2 − xsp

C2
1
2

P

xv1
C2 − xsp

C2
1
2

P

xv3
C2 − xsp

C2
1
2

P

xv1
C3 − xsp

C3
1
2

P

xv2
C3 − xsp

C3
1
2

P

xv2
C3 − xsp

C3
1
2

P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)  

where all elements Kij, are the relative gain matrix. The elements of the 
first row on the right side correspond to the differences among the mass 
purity of component A in the nominal state xsp

A , and the mass purities 
after disturbance p.xV1

A is the mass purity of a chemical compound after a 
disturbance in manipulated variable 1, xV2

A is the mass purity of a 
chemical compound after a disturbance in manipulated variable 2, xV3

A is 
the mass purity of a chemical compound after a disturbance in manip
ulated variable 3. In this work, the relative gain matrix was built as N x 
N, according to the N output streams of the separation scheme. 

The SVD technique requires transfer function matrices, which are 
generated by implementing step changes in the manipulated variables of 
the design of the configuration and registering the responses of products. 
For process presented in this work, controlled variables were considered 
the purity of the products. Similarly, manipulated variables were 
defined, for each equipment. After the designs were generated, open- 
loop simulations were obtained in Aspen plus in order to obtain the 
transfer function matrix according to the methodology presented by 
Vazquez-Castillo et al. [30]. The calculation of the condition number has 
been carried out through the singular value decomposition of the rela
tive gain matrix. Lower values of the condition number of a design are 
preferable over upper values so that the process may assimilate the 
perturbations without system destabilization [31]. 

3. Study case 

The study case presented in this work evaluates the scenario of a 
power plant coupled to a post-combustion CO2 capture process. For all 
cases, it is considered a fuel feed flow of 1000 kmol/h, considering the 3 
most used fuels for electricity production: coal, natural gas and associ
ated gas. As well, it is considered biogas as a green option biofuel. It is 
important to highlight, that the associated gas refers to the natural gas 
found in association with oil within the reservoir. In Table 1 it is shown 
the composition of each fuel in mass fraction. 

The process can be explained in two step process, first the power 
plant and second the CO2 capture process, both were simulated in the 
Aspen Plus V8.8® process simulator as is shown in Fig. 1. For the power 
plant, the design of the chemical process system for operating a com
bustion turbine is not trivial. The mechanical design of combustion 
turbines is a very complex fluid mechanics problem that includes issues 
of heat transfer, ignition, flame speed, flame stability, stress analysis, 
and materials of construction. As well, the design of the chemical pro
cess system for operating a combustion turbine is also not a trivial ex
ercise. The chemical engineering design issues in air-fired systems 
involve finding the amount of air to be fed and the optimum combustor 
pressure because of the trade-off between compressor work and turbine 
power. Some literature details the complex issues associated with gas 
turbine and energy systems simulation [35–37]. If the goal of this work 
were to represent just the power generation plant, then a combined cycle 
for the power generation plant would be adopted to represent a realistic 
situation for the case of gases fuels. Moreover, in the case of coal as fuel, 
several technologies, such as integrated gasification combined cycle, 
pressurized fluidized bed combustor and pulverized coal injection, have 
been proved for the clean utilizations of coal due to the use of combined 
cycles [38,39]. 

The representation of this kind of models for the power generation 
plant, would considerably increase the complexity and robustness of the 
optimization problem. Therefore, to represent the power generation 
coupled to the capture process, considering the thermodynamic 
behavior included during the combustion as well as in the capture, it is 
necessary to use a simplified model that represents the combustion 
behavior, avoiding mathematical robustness from a more complex 
model. Therefore, Luyben [32] proposes that it is possible to represent 
the combustion process with a simplify power plant model. Which 
consists of a conventional combustion turbine system and a single-stage 
air compressor, was considered for energy production from burning 
fuels [32]. In this type of system, a fuel and an oxygen source (air) are 
combined to produce a gas stream of high volume, high temperature and 
pressure. 

For the case of gaseous fuels, the scheme of Fig. 1 was used. In the 
case of coal, because it is a solid fuel, the combustion process should be 
represented as a Rankine-cycle. So, in order to use the proposed scheme, 
the flue gases at the exit of the combustion chamber were considered as 
the beginning of the process. 

There is an important stoichiometric relationship in the proportions 
of fuel and air supplied to the process, which can be analyzed on a molar 
basis according to the combustion reaction with methane, which is the 
simplest of hydrocarbons and constitutes 70- 90% of natural gases [40]. 
Methane reacts with oxygen in the air according to Eq. (11). 

CH4 + 2O2→ CO2 + 2H2O (11) 

For every mole of methane, 2 moles of oxygen are required. Now, the 
composition of oxygen in air is 21 mol%, so there are 3.762 moles of 
nitrogen for every mole of oxygen. If only the amount of oxygen required 
stoichiometrically were fed into the process, a fuel feed of 1000 kmol/h 
would require 2000 kmol/h, representing an airflow of 9523 kmol/h. As 
reported in Luyben [32], an excess of air of at least 5 mol% of oxygen, 
and a maximum of 30:1 air to fuel ratio is required to ensure complete 
combustion. 

Once the fuel and process feed air ratios are established, they are 
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combined in a combustion reactor. For reactor modeling, a combustion 
chamber is considered an RGibbs type reactor operating adiabatically, 
likewise to model the thermodynamic properties involved in the com
bustion processes, the Peng-Robinson thermodynamic model is used. 
Peng-Robinson equation of state has been successfully applied for pre
dicting dew points, liquid dropouts and thermodynamic properties of 
natural gases and other hydrocarbons [41]. The combustion was 
modeled based on the minimization of the Gibbs free energy using a 
RGibbs reactor module from Aspen Plus. The generated combustion 
reaction can reach pressures between 4.5 and 9 atmospheres [42] and 

temperatures from 800◦C till 1400◦C depending on the burning fuel 
[42–44]. The flue gases, obtained at high pressure and high tempera
ture, are fed to the turbine. Turbine power is generated as gases flow 
from the high-pressure inlet to the low-pressure outlet, and this power is 
used to drive electrical generators. Therefore, the bigger this pressure 
difference, the greater the power generated in the turbine. The inlet 
pressure is the limiting design parameter of the combustion turbine, that 
is, the conditions of the combustion reactor govern the limitations of the 
inlet pressure to the turbine. The air-fuel ratio is very important to 
complete combustion during the combustion process. For this stage, the 

Table 1 
Fuel composition in mass and mole fraction [32,33].    

CH4 C2H6 C3H8 i-C4H10 N2 CO2 

Natural Gas Mass 0.96 0.018 0.004 0.001 0.007 0.0095 
Mole 0.98 0.009 0.001 0.0004 0.004 0.003 

Associated Gas Mass 0.872 0.045 0.044 0.012 0.027 - 
Mole 0.93 0.026 0.017 0.01 0.017 - 

Biogas Mass 0.6 - - - 0.02 0.38 
Mole 0.8 - - - 0.015 0.185   

C H O N S 
Coal Mass 0.782 0.052 0.136 0.013 0.017 

Mole 0.51 0.41 0.066 0.007 0.004  

Fig. 1. Scheme of a power plant coupled to a post-combustion CO2 capture process using MEA 30wt% as solvent.  
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main design aspects are related to finding the amount of air to be fed and 
the optimum combustor pressure because of the trade-off between 
compressor work and turbine power [32]. This factor directly influences 
the capture, as it is stated that the capture efficiency depends on the 
composition of flue gases. To ensure high capture efficiency, flue gases 
must be high in CO2. 

To model the CO2 capture plant, the process consists of two columns, 
the absorption and desorption units. The flue gases enter at the bottom 
of the absorber column and the MEA at the top. Therefore, both streams 
interact, driving the CO2 to the liquid stream in the column bottom. In 
the desorber column, it is important to regenerate the solvent and make 
the desorption of the CO2, which strongly depends on the reboiler duty. 
The capture process is complex because the chemical absorption in
cludes several dissociation reactions as is shown from (Eqs. (12)–(16)). 
In Tables 2 and 3 it is shown the kinetic data for (Eqs. (12) and (13)), 
considering an Arrhenius form [12,45,46]. 

Additionally, Table 3 shows the kinetic and equilibrium constants 
corresponding to (Eqs. (14)–(16)). 

For simulation purposes, design specification related to the CO2 re
covery is specified for the gas outlet, to avoid convergence problems 
related to dissociation reactions in liquid phase. For the regeneration 
column, the distillate flow and the reflux ratio are operating variables 
that must be manipulated to recover the greatest amount of CO2 from 
the combustion gas stream and thus store it. In this way, CO2 emissions 
into the atmosphere and the associated environmental impact are 
reduced. Another factor to consider during the capture is the type and 
amount of solvent required during the capture. The CO2 capture plant is 
based on chemical absorption with an aqueous solution of Mono
ethanolamine (MEA) at 30% by weight as solvent was considered [12]. 
The Water/MEA ratio directly impacts the reaction environment. Water 
accelerates reactions by participating in the deprotonation of 
MEA-zwitterion and changing the solvation environment [47]. More
over, by having bigger amount of MEA the viscosity would increases, 
affecting the capture efficiency as well [48]. 

In order to model the electrolyte behavior during the chemical ab
sorption, it is important to consider all the kinetics and the binary 
interaction parameters. Likewise, the reactions involved in the CO2 
absorption/desorption process, include the formation of various ionic 
species involved in using MEA as a solvent. Therefore, using of the 
Electrolyte Non-Random Two Liquid (e-NRTL) thermodynamic model 
allows modeling of the thermodynamic parameters involved and pro
vides satisfactory results for post-combustion capture processes [49]. 
For the capture process, some design aspects related to the process 
configuration and operational conditions should be considered to reduce 
the energy consumption and use of MEA. For the desorber column, in 
order to capture the maximum amount of CO2 from the flue gas obtained 
from the power plant, it is necessary to manipulate the distillate flow 
and the reflux ratio. All the cases were standardized to a purity of 99 mol 
% CO2 and at 99% recovery of the CO2 produced during the combustion. 
This design specification directly affects the energy requirements of the 
process and, therefore directly influences environmental and cost 
indicators. 

4. Optimization 

As stated above, it can be noted that the process for CO2 capture and 
storage is an appropriate case to be optimized, considering as objective 

function the analysis of economic, environmental, and process control 
properties. This can be explained as the design parameters involved in 
the process directly impact the economic and environmental indexes, as 
well it is also necessary to consider the control properties of the system. 
It is important to highlight that to have a positive environmental impact 
in CO2 capture processes, it is necessary to overcome the technical 
challenges involved in the CO2 capture due to the use of aqueous amine 
solutions. In order to obtain a design with high CO2 recovery, low 
environmental impact, good control properties and low operating cost, 
it is necessary to have a high concentration of CO2 in the flue gases, 
which strongly depends on the type of fuel used in the power plant. As 
well, the election of the solvent used plays an important role in the CO2 
capture process. 

Similarly, optimization in terms of control will result in a sustainable 
and green process by increasing CO2 recovery providing economic 
competitiveness by maximizing process efficiency. Reliable indices are 
needed in process optimization to assess green chemistry. It is expected 
that the analysis framework developed in this paper can contribute to 
the use of indices that can assess more than one aspect of green chem
istry, to be easily integrated into green process-based optimization. 

4.1. Multi-objective optimization method 

For optimizing the electricity production process with post- 
combustion CO2 capture, the hybrid stochastic algorithm known as 
Differential Evolution with Tabu List (DETL) is selected. DETL is a sto
chastic global search technique where the search for the global optimum 
is carried out in all feasible regions through an iterative procedure. The 
method was proposed by Srinivas and Rangaia [50], it has been shown 
to have several advantages compared to other optimization methods. 
For example, DETL has faster convergence, smaller computational ef
forts, less computational time to solve non-linear and non-convex 
problems than other methods like genetic algorithms or simulated 
annealing. Another advantage of DETL is its ability to memorize previ
ously tested solutions, thus avoiding the evaluation of previously tested 
solutions. This ability reduces the computational time needed to obtain 
the optimal solution [50,51]. 

The DETL method consists of four basic steps based on the biological 
evolution theory, these steps are: initialization, mutation, crossover and 
selection.  

1 Initialization step: In this step, a random vector of possible solutions 
(xi) is generated. The values of this random vector are constrained to 
upper (max) and lower (min) bounds of each decision variable (i). 
These decision variables are arranged into two D-dimensional vec
tors. Finally, vector of variables (xi) generated as is shown in Eq. 
(17): 

xn
i = randi(0, 1)⋅

(
bi,max − bi,min

)
+ bi,min (17)   

where the rand (0,1) is a random generator constrained in the interval 
0,1, n is the number of generations considered to solve the optimization 
problem. 

Table 2 
Kinetics of reactions [34].  

Reactions  Kinetic constant, k Activation energy, E (kJ/mol) Eq. 

OH− + CO2 k1/k2
̅̅̅̅̅̅→←̅̅̅̅̅̅

HCO−3 
k1 1.33 × 1017 55.38 (12) 
k2 6.63 × 1016 107.24 

HO − C2H4 − NH2 + CO2 + H2O
k3

k4

̅̅̅̅̅̅→←̅̅̅̅̅̅

HO − C2H4 − NH − COO− + H3O+
k3 3.02 × 1014 41.2 (13) 
k4 5.52 × 1023 69.5  
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1 Mutation step: This step consists in the generation of new vector sets 
also known as donor vectors (vt+1

i ). The donor vectors (vn+1) are 
created from three different vectors xa, xb, xc randomly chosen for 
each generation n. The mutation step can be summarized with the 
next Eq. (18): 

vn+1
i = xn

c + F
(
xn

a − xn
b

)
(18)   

where F is called differential weight and it takes values in the continuous 
interval of 0–2. Differential weight provides stability and avoids the 
standstill of methods in similar solutions [52].  

1 Crossover step: In the crossover step the donor vectors (vn+1) are 
combined with the vector of variables (xi) generated during the 
initialization step. The objective of this step is to generate a trial 
vector (un+1

i ). The crossover is carried out through a binomial 
scheme where the method randomly decides how each variable is 
exchanged with the donor vector. The Mathematical formulation of 
the crossover step is shown in Eq. (19). 

un+1
j,i = {

vi if
(
randi,j[0, 1]

)
≤ Cr

xi otherwise (19)    

2 Selection: Lastly, in the selection step, sets of vectors with the best 
fitness function values are chosen to be part of the next generation. 
This selection is executed as is shown in Eq. (20). 

xj,i,G+1= {
ut+1

i if fit
(
ut+1

i

)
> fit

(
xt

i

)

xt
i otherwise

(20)   

This process is repeated until the best value of the objective function 
is found (global solution) or until the maximum number of generations is 
reached. 

The DETL optimization method has been tested using different 
benchmark functions to check its convergence in the neighborhood of 
the optimum for single and multi-objective systems [50,51,53,54]. 
Generational Distance (GD) and Spread (SP) Eqs. (21) and ((22)) are 
used as performance metrics to quantify the performance of DETL al
gorithm on test problems. GD is calculated between the obtained 
Pareto-optimal front (after global search or normalized normal con
straints) and the true Pareto-optimal front (analytical solution). SP is 
calculated for the obtained Pareto-front. 

GD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1d2

i

√

n
(21)  

SP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

j=1

(
dj − d

)2

√
√
√
√ (22) 

Here, n is the number of non-dominated solutions in the Pareto- 
optimal front, di is the distance of each solution in the obtained 
Paerto-optimal front to its nearest point in the true Pareto-optimal front, 
dj is the distance of each solution point in the obtained Pareto-front to its 

nearest points in the same Pareto-optimal front, and d is the average of dj 

for all solution points in the obtained Pareto-optimal front. 
As a result of the optimization process, a Pareto front that presents 

the non-dominated solutions in the search space is obtained. Due to the 
stochastic nature and being a method based on evolutionary theories, it 
is possible to obtain several points that can be optimal in the trade-off of 
the various objective functions. Then, it is possible to generate a catalog 
of several feasible optimal solutions that are in the zone where the 
objective functions converge in their minimum/maximum value. In that 
sense, according to the needs of the final design, it is possible to choose a 
process with characteristics associated to one or several particular 
objectives. 

The optimization parameters can be pre-tuned to improve the per
formance during the optimization process. However, the search space 
formed by the model representing the capture process, the objective 
functions and the constraints considered does not depend at all on the 
optimization parameters used. 

4.2. Multi-objective optimization problem statement 

The optimization problem was solved through Normalized normal 
constraints (NNC) that formulates the multi-objective optimization 
problem as a solve single objective optimization (SOO) based on linear 
mapping of objectives. NNC does not assign any weight to different 
objectives but incorporates extra constraints in the problem formula
tion. The newly formulated constrained SOO problem can be solved 
using an efficient SOO method. NNC method is unlikely to find the 
global Pareto- optimal solutions for non-convex search space. Hence, a 
stochastic global search before NNC method is used to escape from local 
Pareto-optimal solutions [51]. 

In an optimization problem, an objective function is an important 
mathematical formulation from a set of design responses that are con
strained by a specific condition. During the optimization, the objective 
function tries to minimize or maximize the design response from that set 
of variables. During each design cycle the optimization module de
termines which of the set of weighted design responses has the minimum 
value of that design response. The Optimization module can arrive at a 
solution that optimizes the objective function; however, if the con
straints are not satisfied, the result of the optimization is not a feasible 
design. 

In this work the objective function involves three important axes to 
analyze: Return on Investment (ROI) as an indicator of the economy of 
the process by calculating return on investment due to the coupling of a 
capture plant to an existing power plant. Condition Number (γ*) as an 
indicator of the dynamic behavior of the process considering low con
dition number for systems with good controllability and eco-indicator 
99 (EI99) to quantify the environmental impact derived from the 
coupling of the capture process, use of MEA as a solvent. It is expected 
that the analysis framework developed in this paper can contribute to 
the use of indices that can assess more than one aspect of green chem
istry to be easily integrated into a green process-based optimization. 
Similar works have been reported by Sánchez-Ramírez et. al. [55] and 
Contreras-Zarazúa et al. [56] applying these indexes for distillation 
columns. Based in the previous information about the indices, a general 
mathematical expression for the objective function and its respective 
decision variables involved in the optimization procedure are shown in 
Eq. (21n). 

Table 3 
Equilibrium constant values [34].  

eq = A+ B/T+ Cln(T)+ D(T)
A [dimensionless] B [K] C [1/K] D [1/K] Eq. 

MEA+ + H2O → MEA + H3O+ − 3.038325 − 7008.357 0 − 0.00313489 (14) 
2H2O → OH− + H3O+ 132.89888 − 13445.9 − 22.4773 0 (15) 
HCO−3 +H2O → CO2−

3 +H3O+ 216.050446 − 12431.7 − 35.4819 0 (16)  
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Subject to :
yi,f ≥ xi,f
wi,f ≥ ui,f  

where the Air is the air feed flow that enters to the power plant. Pcom1,

Preactor and Pturbine represents the pressure in the compressor, reactor, 
and turbine, respectively operating in the power plant. For the variables 
related to the capture process Ni,j represents the number of stages, NFi,j 

represents the feed stage, Di,j represents the diameter where the i is 
specified for the absorber and de j corresponds to the desorber. MEA 
represents the solvent feed flow in the absorber, RR represents re reflux 
ratio and Q the reboiler duty, both in the desorber column. The objective 
function is restricted to satisfy the recuperation of 99% of the CO2 
produced during the combustion and also to achieve a purity of 99% mol 
of CO2. Where yi,f represents the CO2 recovered in the desorber column 
and xi,f represents the 99% of the CO2 produced during the combustion. 
As well wi,f represents the purity achieved at the desorber column and 
ui,f represents the purity expected of at least 99% mol of CO2. 

According to other optimization works, it has been shown that the 
selected design variables have a direct impact on the sustainability in
dicators that are evaluated [22,55–57]. One way to verify this is by 
analyzing the formulation of the evaluated indices. To calculate the 
economic indicator, it is necessary to obtain the operating cost, which 
depends on the reboiler duty, feed flows, operating pressures, etc. It also 
depends on the cost of capital, which depends on the sizing of the 
equipment. On the other hand, for the calculation of the environmental 
indicator, it is important to consider quantities of what is being evalu
ated. In this case, it is necessary to consider the sizing of the equipment, 
the solvent flows, and heating services. 

The proposed model has a significant number of variables to be 
optimized to have an optimal design and operation conditions, by 
aiming a maximum capture of CO2, the best control criteria, maximum 
return on investment and lowest environmental impact. In this context, 
due to the electrolytic behaviour present in the liquid phase, the CO2 

capture process represents a highly non-linear model. With a certain 
number of discrete and continuous variables, the CO2 capture model is 
suitable for optimizing. The bounds of the decision variables considered 
in this work are presented in Table 4. The bounds were determined 
based on the description mentioned in previous section. 

The implementation of the global optimization approach involved a 
hybrid platform which linked Aspen Plus, Microsoft Excel, and Matlab 
through the implementation of a COM technology (see Fig. 2). To start 
the optimization process, design variables are specified in Microsoft 
Excel. Using the DETL algorithm programmed in Excel through a Visual 
Basic macro, initial values are randomly selected according to the 
methodology provided in the last Section 3.4. 

During the optimization process, a decision vector of design vari
ables is sent from Excel to Aspen Plus. In this process simulator, rigorous 
calculations for the data that identify a particular design of the distil
lation systems are obtained (e.g., temperature profile, molar composi
tion profile, molar flow profile, etc.) via resolution of phase equilibria 
along with the complete set of modeling equations. If the decision vector 
from Excel provides an infeasible combination of variables, ASPEN PLUS 
will detect the model as not feasible and then the optimization algorithm 
will provide a new combination of variables. Then, if the combination of 
variables performs a feasible design, the result data is returned from 
Aspen Plus and stored in Excel. Then perturbations are applied to the 
manipulated variables, and new simulations are executed in Aspen Plus. 
After these simulations are completed, the differences among the com
ponents’ molar purities in the nominal state and the components’ molar 
purities after the perturbations are estimated. These data along with the 
necessary data to estimate the condition number are sent from Excel to 
Matlab. In this software, the calculation of this objective function is 
carried out. The value obtained for the condition number is returned to 
Excel. Then the ROI and Ecoindicator 99 are calculated. The method 
DETL evaluates the objective function, and after that, a new vectors of 
design variables are generated according to the stochastic procedure of 
this method. Once the DETL parameters are complete, the method stops 
the optimization. 

The parameters used for DETL were taken from previous works of 
Rangaiah [51]. Considering population size: 120 individuals, Genera
tion number: 1000, Tabu list size: 60, Tabu radius: 0.0001, Crossover 
fractions: 0.9, Mutation fractions: 0.3. These parameters have proven to 
work exceptionally well with nonlinear problems providing great 
results. 

5. Results and discussion 

This section presents the results obtained from the multi-objective 
optimization for a CO2 capture plant coupled to a power generation 
plant. To analyze the operating conditions for each design, it is impor
tant to highlight the CO2 composition of the flue gases obtained for each 
fuel used for the simulation. So, the CO2 composition in molar fraction 
for Biogas, Coal, Natural Gas and Associated Gas is: 0.054, 0.124, 0.050 
and 0.042, respectively. It is possible to observe that the flue gasses with 
the highest concentration of CO2, is the one that is obtained from 
burning Coal, followed by those obtained from Biogas and Natural Gas. 
This concentration directly affects the parameters related to operational 
conditions, such as solvent requirement and reboiler duty, which impact 
on economic and environmental indexes. In Fig. 3, a 3D representation 
of the Pareto Front shows each index́s trend during the optimization 
process for each fuel. According to the analysis of the 3D Pareto Fronts, it 
can be observed globally that the objectives are in competition. Having a 

Table 4 
Design variables considered for the multi-objective constrained optimization.  

Variables Type of 
Variable 

Symbol Range Units 

COMBUSTION 
Air Flow Continue Air 9 000–35 

000 
kmol/ 
h 

Compressor Pressure Ratio 
(pressure out/ pressure 
in) 

Continue PRcom1 

(out/in) 

1–8 — 

Combustion Reactor 
Pressure 

Continue CPreactor 4.5–9 Atm 

Turbine Discharge Pressure Continue DPturbine 1–8 Atm 
ABSORTION 
Number of stages Discrete Ni 4–99 — 
Fed Stage Discrete NFi 4–99 — 
Diameter Continue Di 0.5–3.5 m 
Solvent Flow Continue MEA 43000–44 

000 
kmol/ 
h 

DESORPTION 
Number of stages Discrete Nj 4–99 — 
Fed Stage Discrete NFj 4–99 — 
Diameter Continue Dj 0.5–3.5 m 
Reflux Ratio Continue RR 0.1–75 — 
Reboiler Duty Continue Q 0.03–151. 

38 
GJ/h  

Min [ − ROI, γ∗, EI99 ] = f
(
Air, PRcom1(out/in), CPreactor, DPturbine, Ni,j, NFi,j, Di,j, MEA, RR,Q

)
(21)   
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Fig. 2. Software interaction used for hybrid optimization platform.  
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design with lower environmental impact and good control properties 
implies sacrificing economic recovery. Conversely, having a design with 
favorable economic recovery represents having a bigger environmental 
impact. Therefore, the design with the objectives in balance was chosen 
as the optimal design. 

For the Biogas, Fig. 3a, when the value of the eco-indicator 99 is low, 
then the value of the ROI is high, under this scenario it could be said that 
the two objectives trade off. However, there still missing the control 
index. For the condition number it is found that when the other two 
objectives trade off, the control objective is opposed, the system would 
not present a good controllability when high values of condition number 
are presented. One way to explain this behavior is through the design 
variables. For low values of eco-indicator and a high value of ROI, the 
topology of the process is smaller and there is an increase in CO2 re
covery due to the increase of air flow, solvent flow, thermal flow, 
reboiler duty and reflux ratio. In that sense, by having a smaller 
equipment size there will be a direct impact on process costs. On the 
other hand, despite increasing reboiler duty and reflux ratio, the impact 
of these variables on the economic indicator is leveled off due to the high 
CO2 recovery. On the other hand, by having an increase in the process 
flows and in the reboiler duty, the condition number will increase. So, 
the obtained designs will not present good control properties compared 
to those with low condition numbers. By having bigger systems, the 
disturbances will be bigger and can be directly related to the security 
indicator, since the bigger the process is, the bigger the risk. 

For the Coal, Fig. 3b, when the value of the eco-indicator 99 and 

condition number is low, then the value of the ROI is also low, under this 
scenario it could be said that when the process has good environmental 
impact and good control properties, there will be the case in which the 
process is not economically profitable. 

For the Natural Gas, Fig. 3c, when the value of the eco-indicator 99 is 
low then the value of ROI is low and the value of condition number is 
high, under this scenario it is possible to observe that none of the ob
jectives trade off. Otherwise, when the eco-indicator’s values are high, 
then the value of ROI will be high and the condition number will be low. 
For the Asociated Gas, Fig. 3d, when the value of the eco-indicator 99 is 
low then the value of ROI is low and the value of condition number is 
high, under this scenario it is possible to observe that none of the ob
jectives trade off. Otherwise, when the eco-indicator’s values are high, 
then the value of ROI will be high and the condition number will be low. 
For this scenario could be said that when the process is economically 
profitable and presents good control properties, it will have a high 
environmental impact. It is important to highlight that spikes are 
observed in the results obtained for the condition number in the opti
mization curves. It is well reported in the literature that this behavior is 
observed due to the nonlinearity of the open-loop response, in the sys
tem under study, when find design specifications are far from optimal 
values [58,59]. 

For the Coal, Natural Gas and Asociated Gas; the variables regarding 
the topology of the process do not maintain a trend that allows for a clear 
explanation of how they affect the economic, control, and environ
mental indices. However, despite this behavior in the variables, it can be 

Fig. 3. Pareto fronts between the Condition Number (CN), Return on Investment (ROI) and Ecoindicator 99 for (a) Biogas, (b) Coal, (c) Natural Gas and (d) 
Associated Gas. 
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said that the relationship between solvent, reflux ratio and reboiler duty 
are maintained. That is, if the amount of solvent increases, the reflux 
ratio increases and, therefore the reboiler duty. So, this behavior could 
give us an indication of how the sustainability indices are affected. 

Table 5 shows a summary of the optimal designs for each fuel, the 
optimal design for each case is when the objectives functions are in 
equilibrium between them and competition between targets is balanced. 
For the case of coal, as the flue gases at the exit of the combustion 
chamber were considered as the beginning of the process, there is no 
results about compressor pressures and combustion temperature. 

It is possible to observe the impact of some design parameters on the 
process performance. For the absorption unit, when the CO2 concen
tration is low, the efficiency in the capture is affected. In order to capture 
a bigger amount of CO2, the solvent requirement increases. Moreover, 
the reflux ratio is directly related to the energy requirements. As higher 
is the reflux ratio the energy requirements for the capture will increase. 
For the analysis of the sustainability indexes, it can be observed that the 
better return on investment when implementing a capture process is 
when associated gas and natural gas are used as fuels, this trend is 
related to the topology of the process. The process configuration is 
smaller for these two fuels, directly impacting construction costs. Also, 
as the flue gasses for those fuels have a bigger concentration in CO2, the 
solvent requirements will be less compared to the other two fuels. It is 
possible to see that the least environmental impact occurs when natural 
gas is used as a fuel. Several factors can explain this. First of all, it is the 
process with the biggest CO2 recovery, therefore the environmental 
footprint related to CO2 emissions tends to decrease. 

Likewise, the reduction in environmental impact can be explained 
because it is the process that has the lowest energy requirements and 
uses of solvents; these factors have a significant impact on the 

environmental weighting. On the other hand, it can be observed that the 
process where coal is used has an environmental score approximate to 
that obtained with natural gas. However, this process requires the 
highest use of solvent, due to the low concentration of CO2 in its flue 
gases. As well as the process in which there is a lower recovery of CO2. 
About the control properties, it can be seen that the processes where coal 
and natural gas are used, are those that present the best control prop
erties by presenting lower condition numbers. However, through the 
optimization process, it is possible to obtain the best combination of 
design variables generating the design that meets the lowest environ
mental impact, highest return on investment and the best control 
properties for each fuel studied. The results obtained show that the 
process in which natural gas is used globally presents a balance in the 
three objectives of costs, environmental, and control properties. 

To validate the results obtained in this study, the Liquid/Gas ratio 
(L/G) and the thermal need [GJ/Ton CO2] are presented for all the fuels 
studied. Thus, for the L/G ratio, the values obtained are between 1 and 3, 
matching with the state of the art [34]. On the other hand, the reboiler 
duty of amine regeneration per ton of CO2 capture is presented, 
obtaining results between 5 and 7 GJ/Ton CO2, likewise these results 
match with those reported in literature [46,34]. 

Moreover, to achieve circular economy and green chemistry goals, it 
is necessary to consider CO2 recovered as a feed flow for another pro
cess. Nevertheless, after capturing CO2, the product stream contains 
several impurities which may negatively impact pipeline transportation, 
geological storage, and applications. Oxygen (O2) and water (H2O) are 
the two major impurities in the CO2 product stream. It is reported that 
the levels of impurities present in the CO2 stream should be less than 50 
ppmv for H2O and to 10 ppmv for O2 [60]. From the results obtained, it 
is possible to see in Table 5 that for all the fuels analyzed, the O2 and 
H2O contained in the CO2 product stream are below than the restricted 
level reported in the literature. In this way, further studies, including the 
transportation and application of the recovered CO2 should be consid
ered in the future. 

6. Conclusion 

This work proposes a simultaneous design and optimization of a CO2 
Capture plant coupled to a power plant. The implementation of CO2 
capture plants can be considered a short-term sustainable alternative to 
reduce CO2 emissions while waiting for the growth of renewable en
ergies that can cover the world’s energy needs. In this study, different 
aspects of the process such as controllability, environmental impact and 
economic issues were considered. The evaluation of different metrics 
provides a wide overview of how different variables can affect the sus
tainability of the process. Therefore, we have considered different 
metrics that aid in evaluating and selecting the most sustainable process 
[61] . 

As shown, it is important to consider the type of fuel used for elec
tricity production. Due to the CO2 concentration contained in the flue 
gasses, there will be variations in the design specifications of the capture 
process. However, before implementing a CO2 capture plant, it is 
necessary to analyze the environmental implications of the imple
mentation, use of solvents, control properties and energy consumption. 

The optimal operating conditions of the different systems were 
found, showing that system operating with the natural gas presents a 
better balance in all the objectives to analyze. Having the lower impact 
with 22549.43 kEcopoints and a return on investment of 73.24%. From 
the results obtained, it can be pointed out that it is possible to find de
signs that operate under the reported theoretical ranges, having an 
improvement in CO2 recovery of 90% to 99% [34]. Although there is an 
increase in energy requirements compared to studies where 
mono-objective optimization is performed for the same process, this is 
necessary to achieve greater CO2 recovery compared to data reported in 
the literature [18]. Likewise, multi-objective optimization allows us to 
visualize a feasible panorama of a sustainable process and gives 

Table 5 
Design parameters for the best scenario of CO2 capture for each fuel.  

Variables Biogas Coal Natural 
Gas 

Associated 
Gas 

COMBUSTION 
Air Flow [kmol/h] 17133.95 20519.78 19602.76 24221.83 
Compressor inlet 

Pressure [atm] 
4.3 — 3.72 3.02 

Compressor outlet 
Pressure [atm] 

16.05 — 13.55 13.93 

Compressor Pressure 
Ratio (out/in) [-] 

3.72 — 3.64 4.60 

Combustion Reactor 
Pressure [atm] 

5.13 — 7.46 6.79 

Combustion 
Temperature [◦C] 

1250.8 — 1351.3 1227.5 

Turbine Discharge 
Pressure [atm] 

4.8 2.73 6.89 5.53 

ABSORPTION 
Number of stages [-] 39 34 29 33 
Fed Stage [-] 3 3 3 3 
Diameter [m] 3.2 1.18 2.59 2.76 
Solvent flow MEA 

[kmol/h] 
43681 43258.06 43504.63 43509.26 

DESORPTION 
Number of stages [-] 33 24 24 22 
Fed Stage [-] 3 3 3 3 
Diameter [m] 2.36 1.33 2.04 1.45 
Reflux ratio (RR) [-] 3.53 2.24 2.32 3.67 
Reboiler duty (Q) [GJ/h] 470. 08 210. 50 364.45 491. 86 
CO2 recovered [ton/h] 67.57 32.72 65.84 70.40 
Q/ CO2[GJ/ton] 6.9 6.4 5.5 6.9 
L/G [kg /h/kg /h] 2.06 1.68 1.47 1.82 
CO2 Purity [%mol] 0.99 0.99 0.99 0.99 
O2 impurities [ppmv] 0.15 0.89 1.39 0.15 
H2O impurities [ppmv] 1.9 1.62 6.64 4.79 
OBJECTIVE FUNTION 
ROI [%] 64.25 40.86 73.24 77.83 
γ* 20.17 2.39 6.7 34.82 
EI99 [kEcopoints] 28920.05 22615.53 22549.43 30369.51  
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indications of which is the best fuel to achieve electricity production in a 
sustainable process. 

To conclude, this work creates the opportunity for future research in 
the field. Showing that in order to maximize the sustainability of the 
proposed process there is a huge area of opportunity in the study of new 
solvents; such as ionic liquids and deep eutectic solvents, to improve the 
efficiency of CO2 capture, to replace the use of MEA as the main solvent 
for CO2 capture and minimize the environmental impact that entails the 
use of such a toxic solvent. 
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